Irreducibility and Greatest Common Divisor Algorithms for Sparse Polynomials

نویسندگان

  • Michael Filaseta
  • Andrew Granville
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factorization of Polynomials in One Variable over the Tropical Semiring

We show factorization of polynomials in one variable over the tropical semiring is in general NP-complete, either if all coefficients are finite, or if all are either 0 or infinity (Boolean case). We give algorithms for the factorization problem which are not polynomial time in the degree, but are polynomial time for polynomials of fixed degree. For two-variable polynomials we derive an irreduc...

متن کامل

Computing with Polynomials Given By Black Boxes for Their Evaluation: Greatest Common Divisors, Factorization, Separation of Numerators and Denominators

Algorithms are developed that adopt a novel implicit representation for multivariate polynomials and rational functions with rational coefficients, that of black boxes for their evaluation. We show that within this representation the polynomial greatest common divisor and factorization problems, as well as the problem of extracting the numerator and denominator of a rational function, can all b...

متن کامل

Computing the Greatest Common Divisor of Multivariate Polynomials over Finite Fields

Richard Zippel’s sparse modular GCD algorithm is widely used to compute the monic greatest common divisor (GCD) of two multivariate polynomials over Z. In this report, we present how this algorithm can be modified to solve the GCD problem for polynomials over finite fields of small cardinality. When the GCD is not monic, Zippel’s algorithm cannot be applied unless the normalization problem is r...

متن کامل

A geometrical approach to finding multivariate approximate LCMs and GCDs

In this article we present a new approach to compute an approximate least common multiple (LCM) and an approximate greatest common divisor (GCD) of two multivariate polynomials. This approach uses the geometrical notion of principal angles whereas the main computational tools are the Implicitly Restarted Arnoldi Method and sparse QR decomposition. Upper and lower bounds are derived for the larg...

متن کامل

Complexity of Algorithms for Computing Greatest Common Divisors of Parametric Univariate Polynomials

This paper presents a comparison between the complexity bounds of different algorithms for computing greatest common divisor of a finite set of parametric univariate polynomials. Each algorithm decomposes the parameters space into a finite number of constructible sets such that a greatest common divisor of the parametric univariate polynomials is given uniformly in each constructible set. The f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008